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Target Scattering Decomposition in Terms
of Roll-Invariant Target Parameters

Ridha Touzi, Member, IEEE

Abstract—The Kennaugh–Huynen scattering matrix con-
diagonalization is projected into the Pauli basis to derive a new
scattering vector model for the representation of coherent target
scattering. This model permits a polarization basis invariant rep-
resentation of coherent target scattering in terms of five indepen-
dent target parameters, the magnitude and phase of the symmetric
scattering type introduced in this paper, and the maximum polar-
ization parameters (orientation, helicity, and maximum return).
The new scattering vector model served for the assessment of
the Cloude–Pottier incoherent target decomposition. Whereas the
Cloude–Pottier scattering type α and entropy H are roll invari-
ant, β and the so-called target-phase parameters do depend on the
target orientation angle for asymmetric scattering. The scattering
vector model is then used as the basis for the development of
new coherent and incoherent target decompositions in terms of
unique and roll-invariant target parameters. It is shown that both
the phase and magnitude of the symmetric scattering type should
be used for an unambiguous description of symmetric target
scattering. Target helicity is required for the assessment of the
symmetry–asymmetry nature of target scattering. The symmetric
scattering type phase is shown to be very promising for wetland
classification in particular, using polarimetric Convair-580 syn-
thetic aperture radar data collected over the Ramsar Mer Bleue
wetland site to the east of Ottawa, ON, Canada.

Index Terms—Characteristic decomposition, coherency,
coherent, diagonalization, eigenvalues, eigenvectors, entropy, in-
coherent, polarimetry, speckle, synthetic aperture radar (SAR),
wetlands.

NOMENCLATURE AND ABBREVIATIONS

α–β model Model introduced by Cloude and Pottier
for parameterization of the coherency
eigenvector.

CTD Coherent target decomposition.
ICTD Incoherent target decomposition.
SSCM Symmetric scattering characterization method

introduced by Touzi and Charbonneau for
optimum characterization of the maximized
target symmetric scattering.

LOS Radar line of sight.
[S] Scattering matrix.
µ1 and µ2 Scattering matrix coneigenvalues.
k Target scattering vector introduced by Cloude.
α Scattering type parameter introduced by

Cloude and Pottier.
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β Orientation angle introduced by Cloude and
Pottier.

αc
s Symmetric scattering type introduced in this

paper as a complex entity.
αs Symmetric scattering type magnitude.
Φαs

Symmetric scattering type phase.
ψ, τm, m Kennaugh–Huynen maximum polarization

parameters: orientation angle, helicity, and
maximum amplitude.

[T ] Coherency matrix.
λ1, λ2, and λ3 Coherency eigenvalues.
λ1 Eigenvalue of the dominant scattering.
λ2 Eigenvalue of the second scattering.
λ3 Eigenvalue of the third scattering.
H Cloude coherency entropy.
αsg and τg Symmetric scattering type magnitude and

helicity of the global scattering, respectively.

I. INTRODUCTION

THE OBJECTIVE of the incoherent target decomposition
(ICTD) theory is to express the average scattering mecha-

nism as the sum of independent elements in order to associate
a physical mechanism with each component [1]–[4]. Target
scattering decomposition permits the extraction of target char-
acteristic information provided that the decomposition satisfies
the general requirement of being robust under a change of wave
polarization basis (i.e., roll invariant) [4]–[8]. Cloude–Pottier’s
ICTD [1], [3], [7] is presently the most used method for de-
composition of natural extended target scattering. The charac-
teristic decomposition of the Hermitian target coherency matrix
allowed Cloude and Pottier to derive key parameters, such as
the scattering type α and the entropy H [1], [3], [9], which have
become standard tools for target scattering classification and for
geophysical parameter extraction from polarimetric synthetic
aperture radar (SAR) data [4], [10]–[13].

To represent the coherent single scattering assigned to each
target coherency eigenvector, Cloude and Pottier introduced
the so-called α–β model [3], [9], which expresses the target

scattering vector �k in terms of five parameters under reciprocity
assumption, i.e.,

�e α−β
T = |�eT | · [cos α · ejΦ1 , sin α cos βejΦ2 , sin α sin βejΦ3 ]T

(1)

where α is referred to as the scattering type, β is the target
orientation angle, and Φi (i = 1, 3) are the target-phase angles
[9], [14]. The most used parameter is α, which when combined
with the Cloude entropy H , leads to the most popular approach
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H/α for target scattering classification [3], [9]. β has been
used for target tilt-angle measurement [15], [16]. In most of
the applications that involve Cloude–Pottier target scattering
decomposition, the target-phase angles Φi have been ignored,
and their physical meaning is still not well understood.

Recently, some concerns have been raised concerning the
Cloude–Pottier eigenvector parameterization. Lee et al. [16]
have noted that β might not provide a pure measurement of
the physical orientation angle (i.e., target tilt angle), and the
right–left-like circular polarization (RR–LL) phase difference
has been used (instead of β) to extract the orientation angle
induced by the azimuthal slope from terrain surface scattering
return [17]. Other concerns have been raised regarding the
Cloude α’s scattering type ambiguities that occur for certain
scatterers [18]. Corr and Rodrigues [18] pointed out the ex-
ample of a helix and a dihedral, which are represented with
the same α (α = 90◦) and cannot be distinguished using the
Cloude–Pottier H/α classification. To remove these scatter-
ing type ambiguities, Corr and Rodrigues [18] have applied
Cloude–Pottier’s ICTD in an alternative orthonormal basis
formed with a sphere and a pair of left- and right-handed
helices. They used the α–β model of (1) for parameterization of
the three eigenvectors derived in the sphere–helices basis. The
use of the alternative sphere–helix basis (instead of the Pauli
matrix) leads to different β and Φi(i = 1, 3) parameters, and
this permits solving for certain α scattering type ambiguities
[18]. This is in agreement with one of our recent studies [19],
in which we have shown that for an asymmetric target, β and
the target-phase parameters Φi vary with the rotation of the
incidence plane about the radar line of sight (LOS) and as such
are not antenna polarization basis invariant.

In summary, even though the roll-invariant Cloude and
Pottier H/α approach has been widely validated for scattering
mechanism classification, investigation of the Cloude–Pottier
α–β model’s parameters, other than α, should be worthy for
a more complete characterization of target scattering. These
parameters should be roll invariant for the extraction of target
characteristic information [5]–[8]. Therefore, there is a need for
the assessment of the α–β model robustness under a change of
wave polarization basis. This will be completed in this paper,
and the problem raised by Corr and Rodrigues [18] regarding
the scattering type ambiguities (related to the description of α)
will also be investigated.

In the following, the Kennaugh–Huynen scattering matrix
con-diagonalization [5], [6] is presented and projected into
the Pauli basis to derive a new scattering vector model. A
complex entity, the symmetric scattering type, is introduced
for an unambiguous description of symmetric target scattering.
The scattering vector model is then expressed in terms of
five independent parameters for the representation of coherent
target scattering; the Kennaugh–Huynen maximum polarization
parameters (orientation, helicity, and maximum return [5], [6]),
and the magnitude and phase of the symmetric scattering type.
A comparative study between our scattering vector model and
the Cloude–Pottier α–β model is covered in Section III. It is
shown that the two models are identical for symmetric targets.
For asymmetric targets, our scattering vector model remains
roll invariant, whereas certain α–β model parameters vary
with the orientation angle. In Section IV, the scattering vector
model served as the basis for the development of a new CTD

that is shown to be unique and roll invariant. A unique and
roll-invariant ICTD is also introduced for decomposition of
partially coherent target scattering. Convair-580 polarimetric
C-band SAR [20] data are used to validate the new ICTD in
Section V. An illustration of our roll-invariant ICTD decompo-
sition is presented, and a comparison with the Cloude–Pottier
ICTD is conducted. The requirement for the use of both phase
and magnitude of the symmetric scattering type for complete
characterization of target scattering is demonstrated. The new
symmetric scattering type phase is shown to be very promising
for wetland classification in particular, using polarimetric SAR
data collected over the RAMSAR Mer Bleue wetland in the east
of Ottawa, ON, Canada.

II. NEW MODEL FOR CHARACTERIZATION OF

COHERENT TARGET SCATTERING

A. Kennaugh–Huynen Con-Diagonalization

To fully exploit the information provided by coherent
scattering, Kennaugh and Huynen [5], [6] have applied the
characteristic decomposition on the scattering matrix [S] us-
ing a nonconventional diagonalization procedure—the Takagi
con-diagonalization [4], [21]. [S] con-diagonalization leads to
the so-called Kennaugh–Huynen con-diagonalization under the
assumption of target reciprocity (i.e., [S] symmetric) [4]–[6],
[22]–[24], i.e.,

[S] = [R(ψ)][T (τm)] · [Sd] · [T (τm)][R(−ψ)] (2)

where [R(ψ)] is the transformation matrix for rotation by angle
ψ, τm is the target helicity, and [Sd] is a diagonal matrix with
the [S] coneigenvalues µ1 and µ2 as diagonal elements. [R(ψ)]
and [T (τm)] are given by

[R(ψ)] =

[

cos ψ − sin ψ
sin ψ cos ψ

]

(3)

and

[T (τm)] =

[

cos τm −j sin τm

−j sin τm cos τm

]

. (4)

The [S] con-diagonalization of (2) permits the characteriza-
tion of each single scatterer with six independent parameters:
ψ, τm, m, γ, ν, and ρ [5], [6], [25]. The maximum polariza-
tion parameters ψ, τm, and m are the orientation, the helic-
ity, and the maximum amplitude return, respectively [5], [6].
These optimal polarization parameters are target characteristics
since the maximum-power polarization parameters are target
characteristics [5], [6]. ψ, which is the rotation angle applied
to subtract the orientation angle effect on target scattering,
provides an intrinsic measure of the target tilt angle [6]. The
helicity τm is used to assess target symmetry. γ and ν are
referred to as the characteristic and skip angle [6], respectively.
ρ, which is the absolute phase of the target, is generally ignored,
except for Pol-In SAR applications. The five parameters above,
known as the Huynen parameters, were used by Huynen [25]
as the basis of the so-called Huynen fork, which used to be
the most popular method for characterization of coherent target
scattering [4], [25]. However, some of Huynen’s parameters
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may not be unique because of the coneigenvalue phase am-
biguity, as raised by E. Luneberg; “It should be pointed out
that Huynen’s parameters are not unique and need to be reval-
uated, in particular the skip angle, due to nonuniqueness of the
coneigenvalue phases” [24]. The projection on the Pauli basis
of the scattering matrix con-diagonalizaton, which is the basis
of the new scattering vector model we are introducing here,
permits circumventing the coneigenvalue phase ambiguity, as
discussed in Section V-B.

B. Scattering Vector Model

The Kennaugh–Huynen con-diagonalization (2) is generally
applied in the H–V linear polarization orthonormal basis. The
Pauli basis offers a more convenient way for scattering rep-
resentation [7], [26]. For a reciprocal target, the scattering
matrix [S] is symmetric, i.e., Shv = Svh, and target scattering
is presented in terms of three orthogonal scattering mech-
anisms: a trihedral, a dihedral, and a 45◦ dihedral [3]. In
order to derive the projection of the Kennaugh–Huynen con-
diagonalization of (2) onto the Pauli basis, the matrix form of
the Kennaugh–Huynen con-diagonalization model can be trans-
formed into a vector form using the Kronecker product ⊗, i.e.,

�S = ([R(ψ)] ⊗ [R(ψ)]) · ([T (τm)] ⊗ [[T (τm)]) · �Sd (5)

where �S = (Shh, Shv, Svh, Svv)T and �Sd = (µ1, 0, 0, µ2)
T are

the vectorial forms of [S] and [S]d, respectively. V T denotes the
V transpose. Equation (5) can be symmetrized in the same way
we did in [27] and then projected on the Pauli basis (Sa, Sb, Sc)
given by

Sa =

[

1 0
0 1

]

(6)

Sb =

[

1 0
0 −1

]

(7)

Sc =

[

0 1
1 0

]

. (8)

This leads to the following target scattering vector parame-
trization, which will be named the scattering vector model:

�e SV
T = |�eT |m · expjΦs ·





1 0 0
0 cos 2ψ − sin 2ψ
0 sin 2ψ cos 2ψ



 · �V orient−inv

(9)

where |�eT |m = |�e SV
T |/m, and �V orient−inv is given as a function

of target helicity τm and [S] coneigenvalues µ1 and µ2 by

�V orient−inv = m ·





µ1+µ2

2
cos 2τm

µ1−µ2

2

−j µ1+µ2

2
sin 2τm



 . (10)

The transformation matrix in (9) represents physically a
rotation of the scatterer incidence plane about the radar LOS
by the angle of orientation ψ. ψ is the orientation of the max-
imum polarization with respect to the horizontal polarization
[25]. Elimination of ψ, or “desying” according to Huynen’s
terminology [16], [25], consists of rotating the scattering

vector �e SV
T about the LOS by the angle −ψ, and this leads to

the orientation-invariant (i.e., roll-invariant) vector �V orient−inv

of (10). The roll-invariant vector �V orient−inv is a function of
the maximum polarization target intrinsic parameters τm and
m and [S] coneigenvalues µ1 and µ2, which are polarization
basis invariant.

C. Complex Entity for the Description of Symmetric Target

Scattering: The Symmetric Scattering Type

Kennaugh [5], Huynen [6], Cameron et al. [28], Touzi and
Charbonneau [29], and Touzi et al. [30] have attached great
importance to a class of targets termed symmetric. A symmetric
target is a target having an axis of symmetry in the plane
orthogonal to the radar LOS direction [5], [6]. A symmetric
target has zero helicity τm = 0 [5], [6]. As a result, its scattering
matrix can be diagonalized by a rigid rotation about the LOS,
and its maximum polarization is a linear polarization that is
either aligned with the target symmetry axis or orthogonal to
it [5], [6]. In the following, we introduce a complex entity αc

s,
named the symmetric scattering type, for characterization of
symmetric target scattering.

The polar coordinates αs and Φαs
of αc

s are defined as a
function of the scattering matrix [S] coneigenvalues µ1 and µ2

as follows:

tan(αs) · e
jΦαs =

µ1 − µ2

µ1 + µ2

. (11)

Like the Cloude α, the symmetric scattering type magnitude
αs is defined in the interval 0 ≤ αs ≤ π/2 (i.e., cos αs ≥ 0 and
sinαs ≥ 0). This leads to −π/2 ≤ Φαs

≤ π/2. It can be shown
that αs is identical to the Cloude α for a symmetric target of low
entropy, as discussed later in Section III.

For a symmetric target, the helicity τm is zero [5], [6], and
the scattering vector model of (9) can be expressed as a function
of αs, Φαs

, and the orientation angle ψ as

�e SV
T = m|�eT |m · expjΦs ·





1 0 0
0 cos 2ψ − sin 2ψ
0 sin 2ψ cos 2ψ





·





cos αs

sin αse
jΦαs

0



 (12)

where the phase Φs includes, in addition to the phase term
of (9), the phase argument of µ1 + µ2. The symmetric target
scattering matrix can be diagonalized by a rigid rotation about
the LOS, as shown in (12). αs is the angle of the symmetric
scattering vector direction in the trihedral–dihedral (Sa, Sb)
basis, whereas Φαs

is the phase difference between the vector
components in the trihedral–dihedral basis. It is worth noting
that the symmetric scattering type phase αs and magnitude
Φαs

, which are derived from the polarization basis invariant [S]
coneigenvalues, are also invariant under a change of antenna
wave polarization basis. Notice also that αs and Φαs

are
identical to the SSCM parameters η and φSb−φSa of [29] for a
symmetric scatterer.
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D. General Expression of the Scattering Vector Model

for a Unique Characterization of Symmetric and

Asymmetric Target Coherent Scattering

In the most general case, targets might be symmetric or
asymmetric, and the scattering vector model of (12) can
be extended to asymmetric targets as a function of target
helicity τm

�e SV
T = m|�eT |m · expjΦs ·





1 0 0
0 cos 2ψ − sin 2ψ
0 sin 2ψ cos 2ψ





·





cos αs cos 2τm

sin αse
jΦαs

−j cos αs sin 2τm



 . (13)

Each coherent scatterer can be represented by the scattering
vector model of (13) in terms of five independent parameters:
the target orientation ψ and the four roll-invariant parame-
ters αs,Φαs

, τm, and m. The Φs of (13) can be ignored for
non-interferometric applications. The maximum polarization is
characterized with the orientation angle ψ and the ellipticity
angle τm, where −π/2 ≤ ψ ≤ π/2 and −π/4 ≤ τm ≤ π/4.

Huynen [25] has pointed out the existence of an orientation
ambiguity related to the Kennaugh–Huynen diagonalization of
(2). If ψ is the solution of (2), then ψ ± π/2 are also solutions
of (2) [25]. It can be shown that a similar ambiguity occurs
with the scattering vector model’s ψ angle, and the following
relationship can be derived using (13):

�e SV
T (Φs, ψ, τm,m, αs,Φαs

)

= �e SV
T (−Φs, ψ ± π/2,−τm,m, αs,−Φαs

). (14)

To remove the aforementioned ambiguity, the range of ψ is
restricted to the interval [−π/4, π/4] using (14), and the target
tilt angle is measured modulo π/2.

It is worth noting that the transformation in (13) is unitary
and preserves the length of the polarization basis invariant

vector �Sd of (5). The latter one, which is equal [up to a
multiplicative term (0.5)] to the rotation-invariant Grave matrix
trace |µ1|

2 + |µ2|
2, corresponds to the total power scattered

by the target, i.e., the span. In fact, like the Cloude–Pottier
α–β model, our scattering vector model of (13) relies on
the SU2-O3+ homomorphism that Cloude has used as basis
of his ICTD [7], [31]. The special unitary constraint (i.e.,
det(U) = 1) related to the SU2-O3 homomorphism [32]

allowed Cloude to preserve the length of the original �Sd vector
and to solve for the coneigenvalue phase ambiguity problem
raised by several authors [23], [24], [33]. Our scattering vector
model solves also for Huynen’s skip angle ambiguity [24],
and (13) should be used instead of (11) to derive unique and
unambiguous scattering parameters αs and Φαs

that are not
affected by coneigenvalue phase ambiguity.

E. Representation of the Roll-Invariant Scattering Vector

As shown in Section II-B, elimination of the orientation
angle ψ leads to a roll-invariant scattering vector �V orient−inv,

Fig. 1. Symmetric scattering target Poincaré sphere.

Fig. 2. Scattering type and helicity Poincaré sphere (αs, τm, Φαs
= 0).

which can be expressed using (13) as a function of m, τm, αs,
and Φαs

, i.e.,

�V orient−inv = m ·
[

cos αs cos 2τm, sin αse
jΦαs ,

−j cos αs sin 2τm]T . (15)

To demonstrate the importance of αs, Φαs
, and τm for an

unambiguous description of coherent target scattering type, one
parameter among the three is fixed, and this permits the use
of the Poincaré sphere representations of Figs. 1 and 2 for

mapping the normalized �V orient−inv.
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Fig. 1 presents the symmetric target Poincaré sphere [29],
[34] for the representation of symmetric scatterers (τm = 0).
Each symmetric scatterer of scattering type parameters αs and
Φαs

is uniquely mapped as a point of latitude 2ψs and longitude
2χs on the surface of the target Poincaré sphere of Fig. 1.

ψs and χs can be derived from the �V orient−inv parameters
(αs,Φαs

), as described in [29]. Notice the key role of the
scattering type phase Φαs

for an unambiguous characterization
of symmetric scatterers that are lying on the North and South
hemispheres of the Poincaré sphere of Fig. 1. If Φαs

is ignored,
only the points on the equator can be characterized with αs, and
symmetric scatterers of nonzero Φαs

cannot be separated from
the equator scatterers of the same αs.

The importance of the helicity for an unambiguous de-
scription of target scattering type can also be demonstrated
using the unit Poincaré sphere of Fig. 2. The sphere covers
only the target scatterers of in-phase SaSb components of the
trihedral–dihedral basis (Sa, Sb), i.e., scatterers of zero sym-
metric scattering type phase Φαs

= ΦSa − ΦSb = 0. The unit
length vector (cos αs cos 2τm, sin αs, cos αs sin 2τm), whose
Sc component (third coordinate) is taken as the opposite of the

imaginary part of the original �V orient−inv component in (15),
may be used for a simplified representation of in-phase-SaSb

scatterers. Each scatterer can be mapped as a point of latitude
2τm and longitude αs on the unit Poincaré sphere of Fig. 2.
Nonsymmetric targets (with Φαs

= 0) are now represented as
separate and unique points on the Poincaré sphere. For example,
the right and left helices, which have the same symmetric
scattering type αs = π/4, are mapped on two different sphere
locations due to the helicity information, i.e., τm = −π/4 and
τm = π/4 for the right and left helices, respectively.

In summary, the three parameters τm, αs, and Φαs
should

be used for an unambiguous description of coherent target
scattering type. In the following, the scattering vector model is
used to assess the sensitivity of the Cloude–Pottier α–β model
to the rotation ψ of the incidence plane about the LOS.

III. COMPARISON OF THE CLOUDE–POTTIER α–β MODEL

WITH OUR SCATTERING VECTOR MODEL

A. Symmetric Target

Comparison of our scattering vector model of (13) with
the Cloude–Pottier α–β model of (1) leads to the following
observations for a symmetric scatterer (τm = 0).

• The Cloude α angle is identical to αs.
• β (= 2ψ), like ψ, provides pure measurement of the phys-

ical target tilt angle about the LOS.
• The scattering type phase Φαs

is identical to the phase
difference φ2 − φ1.

Hence, our scattering vector model and the Cloude–Pottier
α–β model provide the same information for a symmetric
scatterer.

Notice that the phase difference φ2 − φ1, which is denoted
as δ in [3], has been derived in [2] and [3] for azimuthally
symmetric natural targets. For such targets, δ was interpreted
as a measure of the relative magnitude of HH and VV, which
may be used to separate the Bragg surface from multiple
scattering mechanisms [2], [3], [15]. However, δ has never been
used since for scattering type description and as mentioned

by Pottier et al. [15], “the main parameter used for scattering
type identification is α because of its roll-invariant property
[15].” In Section V, Convair-580 SAR data will be used to
demonstrate that both the magnitude αs and phase Φαs

of the
symmetric scattering type should be used for an unambiguous
description of symmetric and asymmetric target scattering. The
additional information provided by Φαs

(or δ) should improve
significantly the Cloude–Pottier bidimensional H/α scattering
classification [9] for symmetric targets. For asymmetric scatter-
ing, δ, which is not roll invariant as shown in the Section III-B,
cannot be used for scattering type description, and the scattering
vector model parameters αs, Φαs

, and τm are required for an
unambiguous description of target scattering type.

B. Nonsymmetric Target

For nonsymmetric targets (i.e., τm 	= 0), the Cloude–Pottier
α–β model and our scattering vector model lead to different
parameters, and the comparative study of the two models leads
to the following conclusions.

• β no longer provides pure measurement of the physical
target orientation. In fact, β is a function of the target ori-
entation angle ψ, the target helicity τm, and the symmetric
scattering type vector parameters αs and Φαs

. Fig. 3
presents α and β/2 variations as a function of αs for a
zero orientation asymmetric target (ψ = 0, τm = π/8, and
Φαs

= 0). The β measure is biased toward higher values
with a bias that increases with increasing τm, as shown
in Fig. 4. The latter one presents α and β/2 variations
as a function of τm for a zero orientation target (ψ = 0,
αs = π/4, and Φαs

= 0). The bias on β of Figs. 3 and 4
might explain the erroneous azimuth slope measurements
obtained from β in [16].

• α and αs provide different information. In fact, the scatter-
ing type α is a function of αs and the helicity τm, as shown
in Figs. 3 and 4. Since both αs and τm are roll invariant,
α is roll invariant. However, scattering ambiguities might
occur if only α is used for scattering type classifica-
tion, as noted in [18] and discussed in Section II-E. For
example, the helix and dihedral, which have the same
scattering type α = 90◦, cannot be separated. In this case,
β and φ2 − φ3 should be used to remove the ambiguity
[35], [36]. Therefore, β, which is needed for target tilt-
angle measurement, is also required for characterization of
asymmetric scattering type. This might lead to erroneous
scattering classification in the presence of tilted targets,
and erroneous tilt-angle measurements if the scattering
type contribution were not retrieved from β.

• Even though α and Φ1 are invariant with the antenna
basis rotation ψ about the LOS, β, Φ2, and Φ3 do vary
with ψ. Therefore, the α–β model parameterization is
not polarization wave basis invariant, and this explains
the different parameter values obtained by Corr and
Rodrigues [18] when they used the sphere–helix basis as
an alternative to the Pauli basis. The “new” β and phase
parameters Φi derived in the sphere–helix basis allowed
Corr and Rodrigues to resolve certain scattering type
ambiguities that occur with the Pauli-basis Cloude–Pottier
parameters [18].
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Fig. 3. α and β/2 variations as functions of αs for a zero-oriented symmetric
scatterer and Φαs

= 0.

Fig. 4. α and β/2 variations as functions of τm for a zero-oriented symmetric
scatterer and αs = 45◦, Φαs

= 0.

In summary, our scattering vector model and the
Cloude–Pottier α–β model provide identical parameters
for a symmetric scatterer. Consequently, all the interesting
results widely published on symmetric targets with the
Cloude ICTD H/α classification can be extended to the
scattering vector model. The use of Φαs

as a third dimension
in addition to the Cloude–Pottier bidimensional scattering
plane should provide significant improvement for symmetric
target scattering classification, as illustrated in Section V-B.
For nonsymmetric targets, certain parameters provided by the
α–β model do depend on the target orientation, whereas the
scattering vector model parameters are still polarization basis
invariant (i.e., roll invariant). In order to take full advantage of
both Kennaugh–Huynen’s basis-invariant target theory [5], [6]
and Cloude’s ICTD theory [1], [7], the scattering vector model
is integrated into Cloude’s ICTD to derive a new ICTD. Our
scattering vector model of (13) also served as basis for the de-
velopment of a roll-invariant CTD, as discussed in Section IV.

Fig. 5. Convair-580 multipolarization SAR image (Ottawa, ON, Canada).
(Red) HH. (Green) HV. (Blue) VV.

IV. UNIQUE AND ROLL-INVARIANT COHERENT AND

INCOHERENT TARGET SCATTERING DECOMPOSITION

A. Unique and Roll-Invariant CTD

The scattering vector model is used as the basis of unique
and roll-invariant coherent target scattering decomposition. The
new CTD is applied to each single-look pixel scattering [S]
matrix. [S] is con-diagonalized and represented in terms of the
scattering vector model parameters ψ, τm, m, αs, and Φαs

,
as discussed in Section II-D. These parameters, which do not
depend on the wave polarization basis, are target character-
istics and permit a unique and roll-invariant decomposition
of coherent target scattering. The roll-invariant CTD provides
an unambiguous description of the symmetric target scattering
type using the complex scattering type parameters αs and Φαs

.
The helicity τm permits the measurement of the degree of target
scattering symmetry. The combination of τm with m and ψ
leads to a full characterization of the maximum target return.

It is worth noting that the Krogager CTD [8], [37] is also roll
invariant. This method decomposes target scattering into three
coherent components that have physical interpretation in terms
of dihedral, sphere, and helical targets [37]. However, even
though the Krogager CTD leads to interesting classifications,
the decomposition is not completed in an orthogonal basis, and
as a result, the elements of the decomposition are not basis
invariant [3]. In contrast to the Krogager CTD, our CTD is con-
ducted in the orthonormal Pauli basis, and this leads to a unique
and roll-invariant decomposition of coherent target scattering.

Notice that the parameters of the unique and roll-invariant
CTD have already been validated for targets of significant sym-
metric scattering, using the SSCM [29]. αs and Φαs

have been
shown to be very promising for ship recognition [30], [38]. The
maximized target symmetric scattering parameters αs and Φαs

permit the identification of permanent symmetric scatterers on
the ship under study, with stable complex symmetric scattering
parameters under different wind and sea conditions [30], [38].
This leads to the extraction of a ship-specific distribution—ship
signature—of permanent quasi-symmetric scatterers (i.e., scat-
terer of significant symmetric scattering component). Their
orientation angle ψ permit an accurate ship pitch angle
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measurement provided that the SAR system is corrected for
focus setting and Doppler centroid errors [30].

All the SSCM promising results [29], [30], [38] were ob-
tained using quasi-symmetric point target of sufficiently high
signal-to-clutter ratio or extended targets that pass the SSCM
target coherence test [29]. The maximum intensity m was used
as the basis for the point target coherence test introduced in
[29]. For more general applications that involve both symmetric
and asymmetric targets, our CTD is more suitable than the
SSCM. However, like the SSCM, the new CTD should be
limited to the decomposition of coherent target scattering,
which is fully characterized with single-look scattering ma-
trix measurement. Targets, which exhibit significant natural
variability in their scattering properties, are generally char-
acterized with the Mueller matrix, covariance or coherency
matrix that preserves the full polarimetric information provided
by the time-varying parameters [2]–[4], [39], [40]. ICTD is
required for the decomposition of these targets, which were
named partially coherent targets in [40]. In the following, the
scattering vector model is used as the basis for the development
of a unique and roll-invariant ICTD.

B. Roll-Invariant ICTD

The roll-invariant ICTD has been inspired from the
Cloude–Pottier ICTD [3], [7]. For a reciprocal target, the char-
acteristic decomposition of the Hermitian positive semidefinite
target coherency matrix [T ] permits a unique representation
of [T ]i as the incoherent sum of up to three coherency ma-
trices [T ]i representing three different single scatterers, each
weighted by its appropriate positive real (noncomplex) eigen-
value λi [7], i.e.,

[T ] =
∑

i=1,3

λi[T ]i. (16)

Each single scattering i(i = 1, 3) is represented by the co-
herency eigenvector matrices [T ]i of rank 1 and the corres-
ponding normalized positive real eigenvalue λi/(λ1 + λ2 +
λ3), which is a measure of the relative energy carried by the
eigenvector i.

The roll-invariant ICTD will be applied as follows.

1) Compute the target coherency matrix [T ] within a moving
window.

2) Diagonalize the target coherency matrix and provide the
three eigenvectors and the corresponding eigenvalues.

3) Apply the scattering vector model of (13) for a unique and
roll-invariant parameterization of the three eigenvectors.
Each eigenvector i, which corresponds to a single scatter-
ing, is presented in terms of the scattering vector model
basis-invariant parameters as follows:

ICTDi = (λi,mi, ψi, τmi, αsi,Φαs i). (17)

Target scattering can be fully characterized by a deep analysis
of each of the three eigenvector parameters of (17). For a global
analysis of the target “average” scattering [3], [9], averaged
(weighted by the eigenvalues) parameters can be derived from
the separate eigenvector parameters, as done in [3] and [9], at

the risk of loss of useful target scattering information. The nor-
malized eigenvalues, which are identical to the ones generated
by Cloude–Pottier’s ICTD, may also be combined to derive the
entropy and anisotropy [3], [9] for the characterization of target
scattering heterogeneity.

However, like the Cloude–Pottier ICTD, our ICTD may be
affected by speckle [19], [40]–[42]. The presence of speckle
may introduce biases on the ICTD parameters derived from
the characteristic decomposition of the coherency matrix sam-
ple. The coherency eigenvalues and entropy estimates can be
significantly biased [41], [42]. Recently, we have shown [42]
using Convair-580 SAR data that the coherency eigenvector
parameters and, in particular, the scattering type αs and α
may also be significantly biased with a bias that decreases
with increasing processing window size. We have shown in
[42] that the statistics of cross-channel coherence derived for
circular complex Gaussian processes [43] can be used to de-
termine the minimum processing window size required for an
unbiased estimation of the ICTD decomposition parameters. A
processing window that includes a minimum of 60 independent
samples is required for an unbiased ICTD [41], [42]. There-
fore, ICTD should be limited to coarse resolution applications,
whereas high-resolution CTD should be limited to coherent
targets of sufficiently high signal-to-noise ratio, as discussed
previously.

V. ILLUSTRATION USING CONVAIR-580 SAR

DATA: RESULTS AND DISCUSSIONS

A. Comparison of Our Roll-Invariant ICTD and the

Cloude–Pottier ICTD

Several polarimetric Convair-580 C-band SAR [20] data sets
collected over Ottawa, ON, Canada, and Mer Blue (in the east
of Ottawa) are used for validation of the preceding results.
For an unbiased estimation of the ICTD, a processing window
of about 60 independent looks [41], [42] is used to calculate
the spatially varying multilook target coherency matrix. The
latter one is then diagonalized to derive the roll-invariant ICTD
parameters and the Cloude ICTD parameters associated to
each image pixel. In this section, the Ottawa scene of Fig. 5,
which includes urban areas, farm fields, and forested areas, is
used. First, the dominant and the second eigenvector scattering
parameters are analyzed. The roll-invariant ICTD parameters of
the global or average (weighted by the eigenvalues) scattering
are considered in the last part of this section. Only the scattering
type magnitude and the helicity are considered in this part,
and the space-averaged parameters of the global scattering are
denoted as αsg and τmg (the index g for the global or average
scattering).

The dominant scattering roll-invariant target parameters αs1,
φαs1

, and τ1 are presented in Fig. 6. Most of the areas in
the scene are of quasi-symmetric scattering with a helicity
τ1 of within ±π/12, with the exception of a few isolated
asymmetric scatterers in the urban and forested areas. τ1, which
also represents the degree to which the Cloude scattering type
α1 deviates from αs1, allows us to conclude that our ICTD and
the Cloude–Pottier ICTD are generally similar for the Ottawa
scene, which is dominated by targets of symmetric scattering:
τ1 
 0 and α1 
 αs1. Comparison of the dominant scattering
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Fig. 6. Dominant scattering type and helicity. (Top) αs1. (Middle) φαs1
.

(Bottom) τ1.

type magnitude αs1 (or α1) with the HH–HV–VV image of
Fig. 5 reveals some weakness related to the scattering type
description; whereas αs1 (and α1) cannot discriminate the farm
fields from forested areas, the multipolarization image does, as
shown in Fig. 5. Such weakness is recovered when the phase
information provided by the symmetric scattering type phase
φαs1

is used as seen in Fig. 6. The key role of the scattering
type phase information for a complete characterization of target

Fig. 7. Second scattering type magnitude and helicity. (Top) αs2. (Middle)
Cloude α2. (Bottom) τ2.

scattering type will be confirmed for wetland classification in
Section V-B.

As discussed in Section III-B, the scattering vector model
and the Cloude–Pottier α–β model should lead to different
results in the presence of asymmetric scattering and, as a result,
to different ICTDs. The second eigenvector scattering (corres-
ponding to λ2, with λ3 < λ2 < λ1), which has demonstrated
the presence of significant asymmetric scattering, should be
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Fig. 8. Measurement of orientation angle. (Top) β1/2. (Middle) |ψ1|.
(Bottom) With ψ1 ambiguity removed.

suitable for a fair comparison between the roll-invariant ICTD
and the Cloude–Pottier ICTD. Fig. 7 presents, for the second
eigenvector scattering, the symmetric scattering type αs2, the
Cloude scattering type α2, and the helicity τ2. The second
single scattering behaves generally as an asymmetric scattering,
with the exception of farm fields, as shown in the τ2 image of
Fig. 7. The use of target helicity τ2 permits separating sym-
metric from asymmetric scatterers that have the same scattering

Fig. 9. Target global scattering parameters. (Top) αsg . (Middle) Cloude αg .
(Bottom) H .

type α2. As a result, ambiguous symmetric and nonsymmetric
scatterers of the same α2 value, such as the helical and dihedral
scattering of α2 = 90◦, are now well separated in the τ2 and
αs2 of Fig. 7. Notice that the moving cars (annotated in Fig. 5)
on the top right of Fig. 7 of α2 = 90◦ are now assigned to
symmetric (τ2 = 0) dihedral scattering. Notice also that the
forest area on the top left of Fig. 7, which is annotated in Fig. 5,
manifests a second scattering that is dominated by the helical
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Fig. 10. Convair-580 multipolarization SAR image (Mer Bleue). (Red) HH.
(Green) HV. (Blue) VV.

Fig. 11. Dominant scattering type phase.

scattering τ2 
 π/2. This area of high helicity, which appears
in the Cloude α2 image as an area of “homogeneous” scattering
(α2 
 π/2), demonstrates in fact a spatially “heterogeneous”
scattering according to αs2. The removal of the scattering type
ambiguities related to α2 description reveals the significant
spatial scattering variations of the forest area, and this explains
the large spatial variations of α2 in comparison with the nearly
uniform but ambiguous α2.

The orientation angle should also highlight the difference
between our ICTD and the Cloude–Pottier ICTD. In Section III,
it was shown that the Cloude orientation angle β is twice the ori-
entation angle ψ for symmetric targets. The orientation angle of
the dominant scattering is calculated for the Ottawa flat scene.
β1/2, |ψ1|, and the orientation angle ψ1 [after ambiguity re-
moval (14)] are presented in Fig. 8. Even though the helicity τ1

of Fig. 6 is close to zero (within ±π/12), a large difference can
be noted between β1/2 and |ψ1|. In comparison with |ψ1|, β1/2
is biased toward higher values, as discussed in Section III-B
and confirmed in Fig. 8. |ψ1| manifests a dominant dark blue
mainly in the flat and symmetric flat farm fields, and this
indicates a target tilt angle close to zero. The same areas
manifests a nonzero β1, and this corresponds to a bias in the

Fig. 12. Dominant scattering type magnitude.

Fig. 13. Dominant scattering type helicity.

tilt-angle measure that was first raised in [16]. Notice that in
the |ψ1| image, the ±π/2 ambiguity in the orientation measure
is now removed in the ψ1 image using (14), with an orientation
measure lying within the interval [−π/4, π/4]. In a future study,
the ICTD orientation angle ψ will be further investigated for
intrinsic tilt target angle measurements.

For a global analysis of the average scattering [9], the
roll-invariant ICTD eigenvalue weighted parameters are de-
rived for the Ottawa scene. The entropy H , which character-
izes scattering heterogeneity [3], [9], our ICTD αsg , and the
Cloude–Pottier ICTD αg are presented in Fig. 9. As might
be expected, the average symmetric scattering type magnitude
αsg performs better than the dominant scattering αs1 of Fig. 6
in terms of farm field and forested areas discrimination. αsg ,
which also demonstrates larger dynamic range than the Cloude
αg , looks to be more promising for target discrimination. In
the future, the information provided by the average scattering
parameters H , αsg , and τmg will be combined and investigated
for a deeper target scattering classification. The complementary
information provided by the dominant scattering phase φαs1

and orientation ψ1 will also be considered for a better target
scattering classification.
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B. Roll-Invariant ICTD Scattering Type Phase Information for

Wetland Classification

Our roll-invariant ICTD has also been investigated for wet-
land classification. Convair-580 polarimetric C-band SAR and
in situ data were collected over the Mer Bleue wetland site in
June 1995. Fig. 10 presents the multipolarization HH–HV–VV
image (HH in red, HV in green, and VV in blue). Four Mer
Blue wetland classes are identified using aerial photos and
ground truth data: open and treed bog, marshes, and swamp.
The roll-invariant ICTD is applied on the Mer Blue image
with a moving window of approximately 60 independent looks.
The dominant scattering parameters φαs1

, αs1, and τ1 are
presented in Figs. 11–13. As shown in Fig. 11, φαs1

permits
an immediate and quite efficient unsupervised classification of
the Mer Bleue wetland into the four wetland classes previously
discussed. φαs1

also permits a clear discrimination within the
open bog class between small shrubs (in magenta) and sedges
(in dark blue), leading to the subclasses open bog 1 and 2. In
contrast to the symmetric scattering type phase, the symmetric
scattering type magnitude αs1 of Fig. 12 has poor potential
in wetland class discrimination and performs worse than the
multipolarization HH–HV–VV of Fig. 10. This is due to the
fact that the C-band scattering type αs1, which is identical to
the Cloude α for symmetric scattering τ 
 0 in Fig. 13, is not
effective for vegetation-type discrimination. Such a result is in
agreement with one of our previous studies [44], in which we
demonstrated that the Cloude α is not effective for forest-type
discrimination. Other polarimetric tools, such as the circular
polarizations and the degree of polarization extrema, were more
successful and permit the enhancement of forest-type discrimi-
nation even under leafy conditions [44]. The use of the phase
information of the complex symmetric scattering type φαs1

provides the key information missed by αs1 for an enhanced
vegetation-type discrimination and wetland classification, as
shown in Fig. 11. Notice that in the helicity image of Fig. 13,
the marsh and open bog classes are dominated by symmetric
scattering, while the tree bog and swamp classes manifest a
significant asymmetric scattering component. In the future, the
helicity will be combined with the complex scattering type
magnitude and phase and the orientation ψ for an improved
wetland classification. All the parameters of our roll-invariant
ICTD will be further studied and validated for wetland indi-
cator measurement, in preparation for the operational use of
RADARSAT-2 for Canadian wetland monitoring.

VI. CONCLUSION

The scattering vector model introduced in this paper permits
a unified decomposition of coherent and partially coherent
target scattering. This model is used as the basis for the develop-
ment of a unique and roll-invariant CTD, which can be applied
for the characterization of coherent target scattering. Partially
coherent targets, which exhibit significant natural variability
in their scattering properties, can be characterized using our
new ICTD. The roll-invariant ICTD, which is inspired from the
Cloude–Pottier ICTD, uses the scattering vector model for the
eigenvector parametrization, and this leads to a unique and roll-
invariant decomposition of partially coherent target scattering

in terms of target characteristics. For symmetric scattering, our
ICTD and the Cloude–Pottier ICTD lead to identical scattering
decomposition. Consequently, all the interesting results widely
published on symmetric targets with the Cloude ICTD H/α
classification can be extended to our ICTD. The use of the
scattering type phase information Φαs

, in addition to that
provided by the scattering type magnitude αs, is essential for
an unambiguous description of target scattering. For asymmet-
ric targets, certain parameters provided by the Cloude–Pottier
ICTD do depend on the polarization basis, whereas our ICTD
parameters remain roll invariant. The Cloude α scattering type
description may be ambiguous at the presence of asymmetric
scattering, as noted in [18]. Such ambiguities are solved with
our ICTD, which uses the helicity in addition to the symmetric
scattering type parameters αs and Φαs

for a complete and
unique representation of target scattering.

Like the Cloude–Pottier ICTD, our ICTD should be limited
to coarse resolution applications. The presence of speckle leads
to biased ICTD parameters, and a processing window that con-
tains a minimum of 60 independent looks is required for an un-
biased ICTD [45]. We have previously recommended [29], [40]
the use of a mixture of high-resolution CTD and coarse-
resolution ICTD for optimum analysis of coherent and partially
coherent target scattering that might occur in the same SAR
scene. Our scattering vector model permits a unified and roll-
invariant decomposition of both coherent and partially coherent
target scattering in terms of unique target characteristics. A
mixed coherent–incoherent target decomposition based on our
scattering vector model is currently being developed. This
should lead to a unique and roll target scattering decomposition,
which preserves the high-resolution coherent target scattering
information as well as the full polarimetric information pro-
vided by the coherency characteristic decomposition of par-
tially coherent target scattering.
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